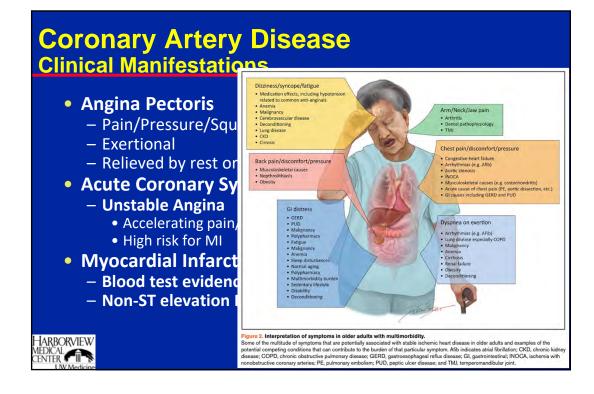
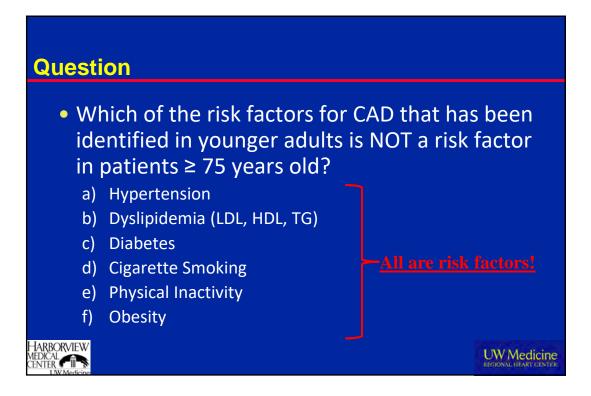

Coronary Artery Disease


- Atherosclerosis appears early in childhood and correlates with risk factors
- Autopsy studies of trauma victims have demonstrated fatty streaks in coronary atherosclerosis in a high % of young men
- The atherosclerotic process can be greatly slowed by preventive measures

HARBORVIEW MEDICAL CENTER

Stable Coronary Syndromes

- Initial Strategy: Medical Therapy
 - Multiple randomized controlled trials (with limitations) and current guideline recommendations
 - Revascularization indicated in patients with breakthrough symptoms and those with high-risk anatomy
- Medical Therapy & Revascularization
 - Present unique challenges: multimorbidity, polypharmacy, variable goals and priorities
 - Symptoms & QOL

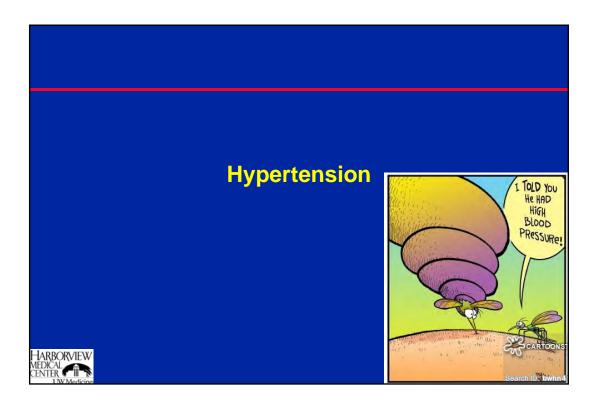


- Which of the risk factors for CAD that has been identified in younger adults is NOT a risk factor in patients ≥ 75 years old?
 - a) Hypertension
 - b) Dyslipidemia (LDL, HDL, TG)
 - c) Diabetes
 - d) Cigarette Smoking
 - e) Physical Inactivity
 - f) Obesity

Coronary Artery Disease Risk Factors

• Modifiable Risk Factors

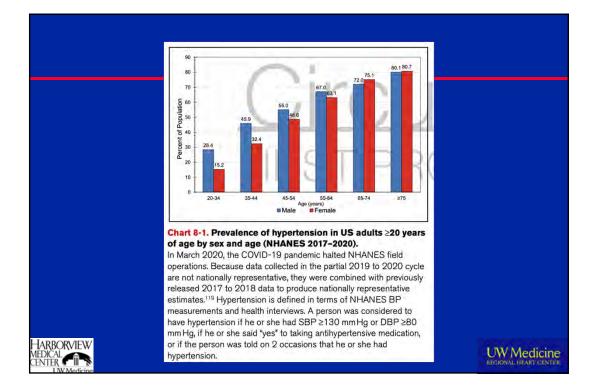
- Hypertension
- Dyslipidemia (LDL, HDL, TG)
- Diabetes
- Cigarette Smoking
- Physical Inactivity
- Obesity

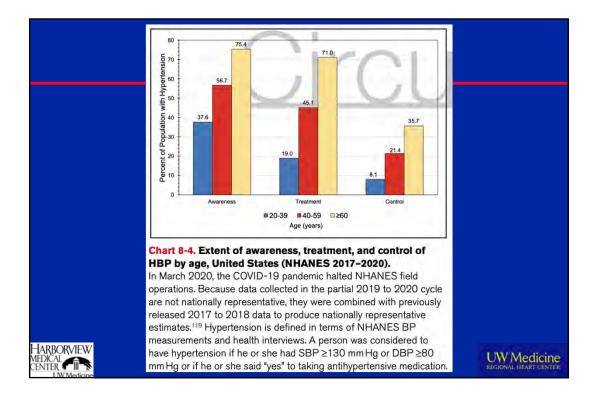

• Non-modifiable Risk Factors

- Family History (1°M < 55y, F < 65y)
- Gender
- Age ($M \ge 45y, F \ge 55y$)

HARBORVIEW MEDICAL CENTER

• Emerging Risk Factors

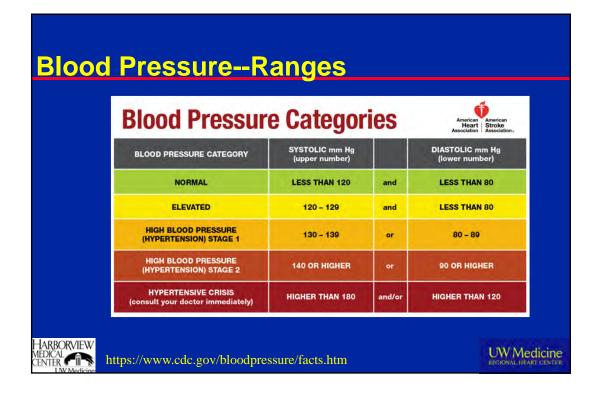

- Homocysteine
- Inflammatory factors
 - C-reactive protein
 - LP-PLA2
- Infectious factors



HTN & Older Adults

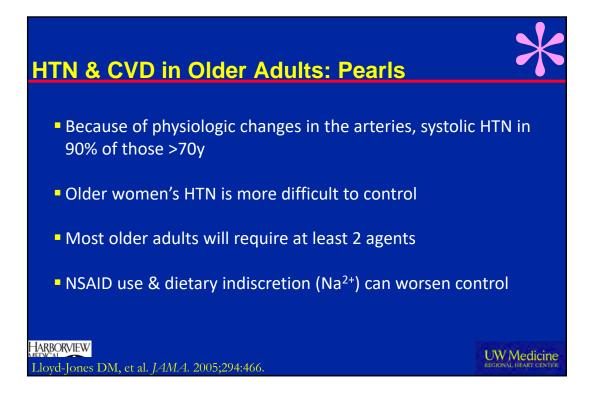
- HTN prevalence ~70% in those ≥ 65y age, with a lifetime risk of 90%
- Most prevalent modifiable risk factor with greatest population attributable risk for CAD, Cerebrovascular disease and PAD
- > 70% of older adults with incident MI, stroke, acute aortic syndromes, and heart failure have HTN

Lloyd-Jones DM, et al. JAMA. 2005;294:466; Aronow WS, et al. Circulation. 2011;123:2434; RogerVL, et al. Circulation. 2012;125:e12.

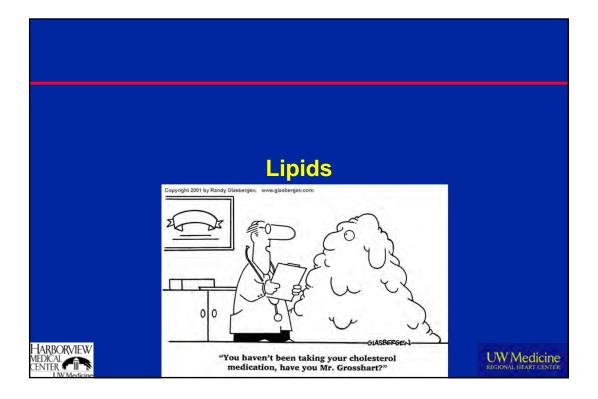


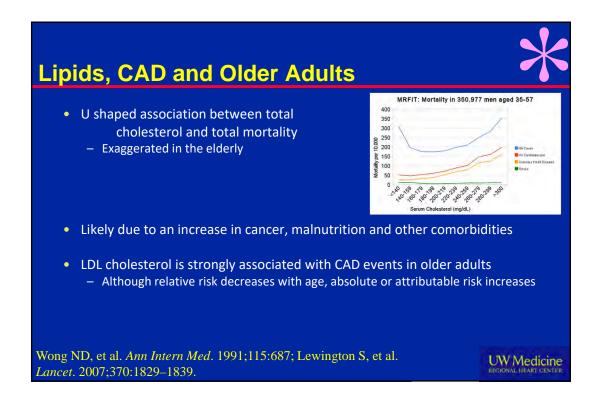
- The BP relationship to risk of CVD is continuous, consistent, and independent of other risk factors
- Each increase of 20/10 mmHg doubles the risk of CV disease across the entire BP range starting from 115/75 mmHg

CDC. Vital signs. MMWR. 2011;60(4):103-8. Lewington S, et al. Lancet. 2002;360:1903–1913.


Benefits of Lowering BP	*					
	Average % Reduction					
Stroke incidence	35 – 40%					
Myocardial infarction	20 – 25%					
Heart failure	50%					
In the HYVET trial of 3845 ≥ 80 y, with SBP ≥ 160mmHg, treatment was associated with: 39% decrease in fatal stroke 21% decrease in all cause mortality						
HARBORVIEW64% decrease in heartBeckett NS. NEJM. 2008;358:1887.	failure					

comorbidity	ACC/AHA ^[1]	ESC/ESH ^[2]	CHEP ^[3]	NHFA ^[4]	JHS ^[5]	NICE ^[6]	ACP/AAFP ^[7]	ADA ^[8]	KDIG
Established atherosclerotic cardiovascular disease*	<130/80	<130/80	<120/80	<120/80	<130/80	<140/90			
Heart failure	<130/80	<130/80	<120/80	<120/80	<130/80	<140/90			
Diabetes mellitus	<130/80	<130/80	<130/80	<120/80	<130/80	<140/90		<140/90 9	
Chronic kidney disease	<130/80	<130/80	<120/80	<120/80	<130/80	<140/90			<120/80
High cardiovascular risk [∆]	<130/80	<130/80	<120/80	<120/80	<130/80	<140/90			
Older adults*	<130/80	<140/80	<120/80	<120/80	<140/90	<140/90	<150/90\$		
No comorbidity	<130/80	<130/80	<140/90	<140/90	<130/80	<140/90			
	d pressure monitor		i pressure is i	nonicored opi	annony (eg,	men stanua	dized office measur	ement, autor	index a
hysicians; ADA: ardiology/Europ	American Diabetes ean Society of Hyp	Association; CHE ertension; JHS: Ja	P: Canadian apanese Hype	Hypertension ertension Soci	Education I ety; KDIGO	Program; ES): Kidney Dis	Physicians/America C/ESH: European S ease Improving Glo	ociety of bal Outcome	s; MI:
Physicians; ADA: Cardiology/Europ myocardial infarc	American Diabetes ean Society of Hyp tion; NHFA: Nation	Association; CHE ertension; JHS: Ja al Heart Foundation	P: Canadian apanese Hype on of Australia	Hypertension ertension Soci a; NICE: National	Education I ety; KDIGO onal Institut	Program; ES 9: Kidney Dis te for Health	C/ESH: European S ease Improving Glo and Care Excellenc	ociety of bal Outcome	s; MI:
Physicians; ADA: Cardiology/Europ myocardial infarct * Established ath	American Diabetes ean Society of Hyp tion; NHFA: Nation erosclerotic cardiov	Association; CHE ertension; JHS: Ja al Heart Foundatio vascular disease in	P: Canadian apanese Hype on of Australia acludes patier	Hypertension ertension Soci a; NICE: Nation hts with prior	Education I ety; KDIGO onal Institut MI, stroke,	Program; ES 9: Kidney Dis te for Health and periphe	C/ESH: European S ease Improving Glo and Care Excellenc	ociety of bal Outcome	s; MI:
Physicians; ADA: Cardiology/Europ myocardial infarct * Established ath ¶ ADA suggests a	American Diabetes ean Society of Hyp tion; NHFA: Nation erosclerotic cardiov lower target (<13 elevated calculated	s Association; CHE ertension; JHS: Ja al Heart Foundatio vascular disease in 0/80) mmHg in p	P: Canadian apanese Hype on of Australia acludes patien atients with d	Hypertension ertension Soci a; NICE: Nation hts with prior liabetes at hig	Education I ety; KDIGO onal Institut MI, stroke, ph cardiovas	Program; ES D: Kidney Dis te for Health and periphe scular risk.	C/ESH: European S ease Improving Glo and Care Excellenc	ociety of bal Outcome e (United Kin	s; MI: gdom).


Benefits of Lifestyle Modifications on Blood Pressure


Modification	Approximate SBP reduction
Weight reduction	5–20 mmHg/10 kg wt loss
Adopt DASH diet	8–14 mmHg
Sodium reduction	2–8 mmHg
Physical activity	4–9 mmHg
Moderation of EtOHconsumption	2–4 mmHg
HARBORVIEW MEDICAL CENTER CENTER	UW Medicine REGROVAL INDARC CENTER

Anti-HTN therapy for older adults based on comorbidities

Compelling Indication	Initial Therapeutic Choice				
Heart failure	Thiazide, β-blocker, ACE inhibitor, angiotensin receptor antagonist, calcium channel blocker, aldosterone antagonis				
Previous myocardial infarction	β-Blocker, ACE inhibitor, aldosterone antagonist, angiotensin receptor antagonist				
CHD or high-risk CVD	Thiazide, β-blocker, ACE inhibitor, calcium channel blocker				
Angina pectoris	β-Blocker, calcium channel blocker				
Aortopathy/aortic aneurysm	β-Blocker, angiotensin receptor antagonist, ACE inhibitor, thiazide, calcium channel blocker				
Diabetes mellitus	ACE inhibitor, angiotensin receptor antagonist, calcium channel blocker, thiazide, β-blocker				
Chronic kidney disease	ACE inhibitor, angiotensin receptor antagonist				
Recurrent stroke prevention	Thiazide, ACE inhibitor, angiotensin receptor antagonist, calcium channel blocker				
Early dementia	Blood pressure control				
	on therapy. ACE indicates angiotensin-converting enzyme; CHD, coronary heart disease; and CVD, cardiovascular disease. rmission. © 2011, American Heart Association, Inc.				

	ssifications						
Total Cholesterol (mg/dL)		LDL Chole	LDL Cholesterol (mg/dL)				
<200	Desirable	<100	(Optimal			
200 – 239	Borderline	100 – 129	Near optimal				
<u>></u> 240	High	130 – 159	Borderlin	е			
		160 – 189	High				
<u>Triglyceri</u>	Triglycerides (mg/dL)		١	/ery High			
< 150	Normal						
150-199	Borderline	<u>I</u>	HDL (mg/dL)				
200-499	High	< 40	Low				
500	Very high	>/= 60) High				
Harborview	ARBORVIEW TC = HDL + LDL + TG						
MEDICAL CENTER UW Medicine				UW Medicine REGIONAL HEART CENTER			

Trial (ref)	Intervention	Age Subgroup (n)	All-Cause Death RRR%/ARR%	CHD Death RRR%/ARR%	CHD Events RRR%/ARR%	Stroke RRR%/ARR%	Comment
4S ⁵³	S20-40 vs PL	65–70 (1021)	34/6.2*	43/6.0	34/13.3 33/7.1†	NR	↓CV admissions by 21%
LIPID ⁵⁴	P40 vs PL	65-75 (3514)	21/4.5	24/2.9*	26/3.3	12/1.3	
CARE ⁵⁵	P40 vs PL	65–75 (1283)	NR	45/4.5	32/9* 39/6.7‡	40/2.9	32% RRR/5.2% ARR for PCI/CABG
HPS ⁵⁶	S40 vs PL	70–80 (5806)	NR	NR	18/5.1‡	NR	9.2% ARR in primary end point in patients 75–80 y (n=1263)
PROSPER ⁵⁷	P40 vs PL	70-82 (5804)	NS	24/0.9	19/2.1‡	NS	25% ↑ cancer risk with P40
PROVE-IT TIMI 2258	A80 vs P40	≥70 (634)	NR	NR	40/8 LDL-C < 70 vs LDL-C ≥70 mg/dL (in death/MI/UAP*)	NR	AE rate similar to young
TNT ⁵⁹	A80 vs A10	65–75 (3809)	NS	NS	19/2.3* (A80 vs A10)	21/0.9-NS	↑LFTs w A80 vs A10
SAGE ⁶⁰	A80 vs P40	65–85 (893)	67/2.7	67/0.9 based on 8 deaths	29/3.1‡ (<i>P</i> =0.11)	Too few to compare	↑LFTs w A80 vs P40
Meta-analysis ⁶¹		65-82 (19569)	22/3.1*	30/2.6	17/2.1‡ 26/2.3 NFMI	25/1.7	30%↓PCI/CABG

A indicates atorvastatin; AE, adverse events; ARR, absolute risk reduction; CABG, coronary artery bypass grafting; CARE, The Cholesterol and Recurrent Events; CHD, coronary heart disease; CV, cardiovascular; HPS, Heart Protection Study; LDL-C, low-density lipoprotein cholesterol; LIPID, Long-Term Intervention with Pravastatin in Ischaemic Disease; LFTs, liver function tests; MI, myocardial infarction; NFMI, nonfatal myocardial infarction; NR, not reported; NS, not significant; P, pravastatin; PCI, percutaneous coronary intervention; PL, placebo; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy—Thrombolysis in Myocardial Infarction 22; S, simvastatin; w, with; RRR, relative risk reduction; SAGE, Study Assessing Goals in the Elderly TIT, Treating New Targets; and UAP, unstable angina.

Fleg JL, et al. Circ. 2013;128:1

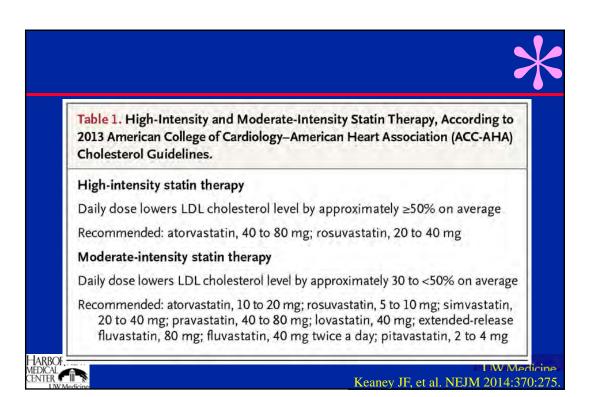
ATP III Classifications

Lipids and CAD

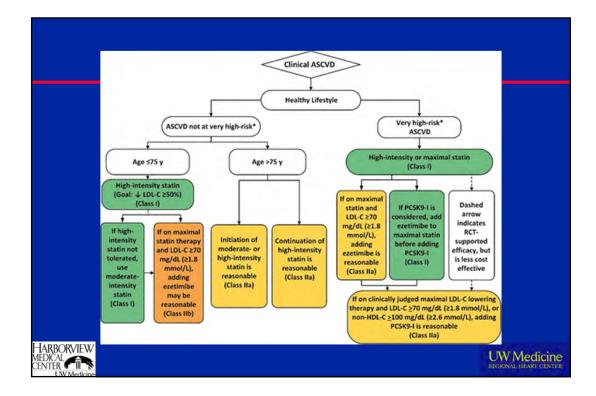
- Good evidence for secondary prevention w/ medications to ~85y/o (mostly subgroup analysis)
 - Unless issues of polypharmacy, comorbidity, frailty make treatment seem unwise/unwanted
- RCT data suggest a 1-3 year lag time for benefits for CAD and stroke end points
- Statins also reduce stroke risk and PAD symptoms
- Case series suggest statins can contribute to cognitive dysfunction/memory loss

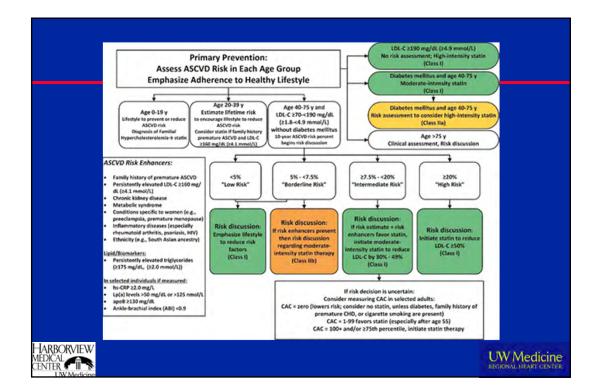
HARBORVIEW Fleg JL, et al. Circ. 2013;128;1; Afilalo J, et al. JACC. 2008;51:37;Baigent C, et al.Lancet. 2010;376:1670.

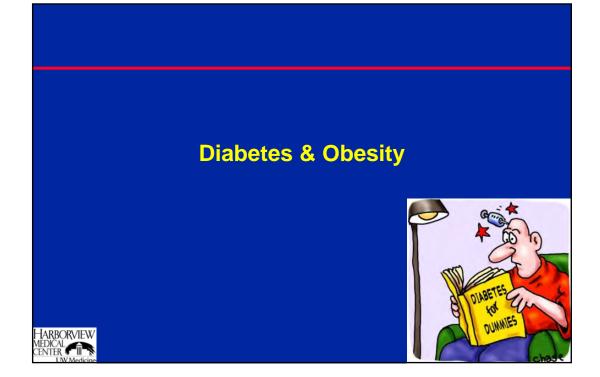
Adverse Events


- Case series suggest statins may be associated with cognitive dysfunction/memory loss
- Many clinical trials did not find a difference in adverse events in older vs. younger
- Aggressive lipid lowering trials had higher rates of abnormal LFTs
- Muscle abnormalities (from myalgias to rhabdo) are difficult to tease out
 - Often dose related
 - More common in women, small stature/low BMI, use of fibrates, cytochrome p450 agents (lova,simva,atorva), use during surgery, with renal/hepatic dysfunction, fatty liver, hypothyroidism, DM, heavy EtOH use
- Avoid fibrates (esp. Gemfibrozil) + Statins

Roberts CG, et al. J Gerontol A Biol Sci Med Sci.2007;62:879; Tomaszewski M, et al.Pharmacol Rep. 2011;63:859; McKenney JM, et al. Am J Cardiol. 2006;97:89C.

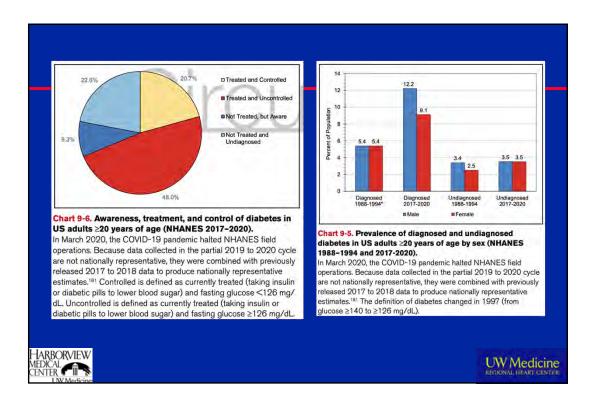

Lipid Management


- Lifestyle modifications
 - Diet, Exercise (including Cardiac Rehab)
- ACC/AHA Risk calculator (only up to age 79)
 - <u>https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/</u>
 - **10-year risk for ASCVD is categorized as:
 - Low-risk (<5%) Borderline risk (5% to 7.4%) Intermediate risk (7.5% to 19.9%) High risk (≥20%) Indicates a field required to calculate current 10-year ASCVD risk for patients age 40-79 or Lifetime risk for patients age 20-59. Risk will automatically calculate once these fields are populated.


HARBORVIEW MEDICAL

CAD (Chen), NW GWEC Winter 2024

Diabetes 2021: 11.6% of the US (38 million—2 million Type 1) ~ 1/3 of all cases of diagnosed DM in those >/=65 ~ 29% (16.5 million) of those >/= 65y have DM \$423 Billion: Total cost 2022 of diagnosed diabetes


Obesity

/IEW

- > 1/3 of those >/= 65y and over were obese in 2007–2010
- Prevalence 65–74 > 75 and over in both men & women
- Between 1999–2002 and 2007–2010, the prevalence of obesity among older men increased
- Additionally ~33% overweight (BMI 25-30kg/m²)

%20The%20percentage,18%20and%20older%20had%20prediabetes.

- So nearly 2/3 of seniors are either overweight or obese

UWNCDO

Diabetes in Older Adults

- Increasing insulin resistance
 - Especially skeletal muscle, visceral adiposity and higher fat:lean body mass
- Decreasing insulin secretion
 - Low β -cell function
- 30% of older adults with DM have CAD 2x that of non-DM
- Especially high risk, but heterogeneous population, needing individualized care

Scheen AJ. Diabetes Metab. 2005;31(spec no 2):5S27; Røder ME, et al. J Clin Endocrinol Metab. 2000;85:2275; Selvin E, et al. Diabetes Care. 2006;29:2415.

Diabetes in Older Adults--Management

- Lifestyle: weight loss, diet, exercise
- Due to risks associated w/ intensive control, HbA1c target of 7-7.9% for most, especially those w/ comorbidities
 - Even higher in especially frail, short life expectancy
- Medication choices: Renal, hepatic disease, heart failure
 - Metformin favored, then glipizide, repaglinide
 - Insulin: ultra long-acting and very short acting prandials

• Control of concurrent HTN and dyslipidemia is critical Ismail-Beigi F, et al. Ann Intern Med. 2011;154:554; Lee SJ, et al. J Am Geriatr Soc. 2011;59:666; Soe K, et al. Maturitas. 2011;70:151.

Obesity in Older Adults

- Decreased metabolic rate + eating habits
- Reduced physical activity
- Medications associated with weight gain

 Hypoglycemic drugs, anti-depressants, steroids
- Obesity also associated with other RF (HTN, HLP, DM)
- Complex association with total mortality, stronger <85y, as well as cardiovascular mortality

HARBORVIEW Poirier P, et al. Circulation. 2006;113(6):898; Roger VL, et al. Circulation. 2012;125;e12.

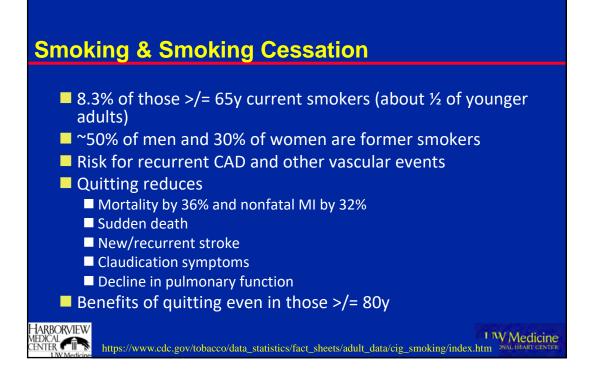
edicine

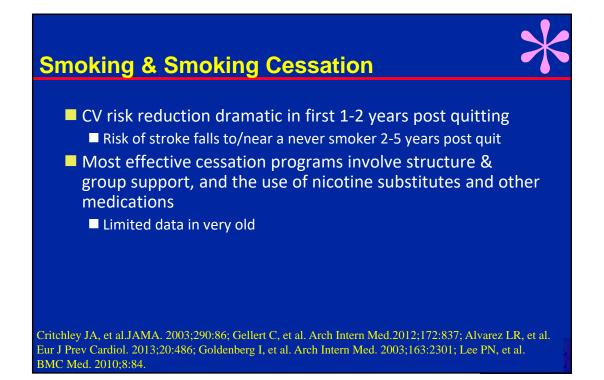
Obesity in Older Adults--Management

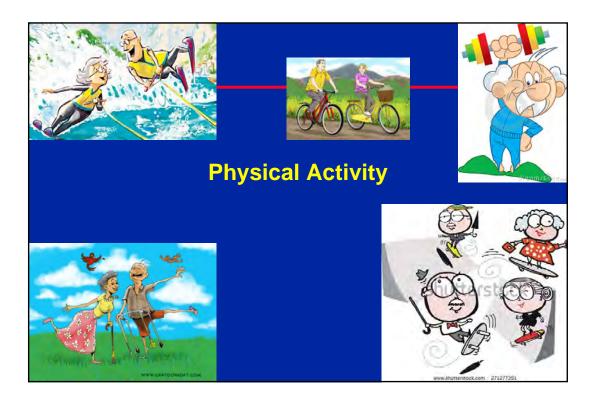
- Lifestyle: Diet, exercise
- Benefits of weight loss
 - HTN control, dyslipidemia, glucose control
 - Improved physical function, QOL
- Dietary only weight loss risks loss of muscle mass (esp. in Women)
- Exercise, including resistance training should accompany dietary changes
- Maintenance challenging

Beavers KM, et al. Am J Clin Nutr. 2011;94:767; Whelton PK, et al. JAMA. 1998;279:839; Williamson DA, et al. Arch Intern Med. 2009;169:163; Houston DK, et al. Obes Res. 2005;13:1793.

 Study: More senior citizens using pot...

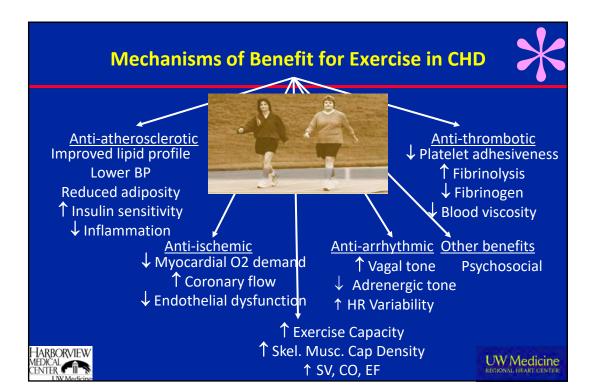

 FEINIS


 TODAT


 TODAT

 WITE

 ONE GRANLUNDO www.davegrandend.ese



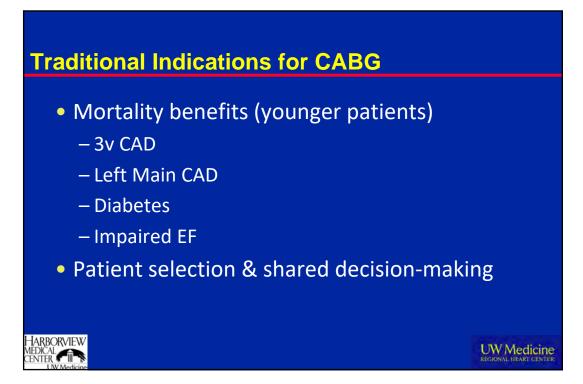
Physical Activity Low rates of regular physical activity in older adults Physical activity favorably influences CAD risk factors and improves prognosis in those with disease Benefits cognitive function, falls reduction, mental health and QOL Combinations of aerobic/endurance type training and strength training may be ideal

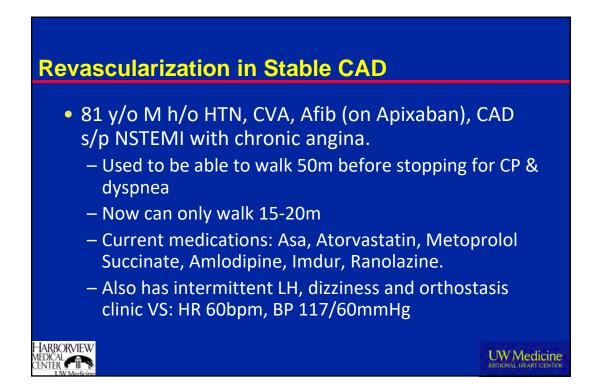
Cardiac Rehabilitation

- Systematized multi-modality approach to CV risk reduction
- Usually done after a cardiac event (MI, Stenting, Valve/CABG surgery, Heart transplantation, Angina)
- Phase I, II, III
- Benefits (meta-analysis)
 - 20% reduction in all-cause mortality
 - 25% reduction in cardiac mortality

Cardiac Rehabilitation

- Referral and participation rates low
 - 20% referral rate
 - Medicare participation ~12% of eligible
 - Automated/protocol driven referrals are most effective
- Covered diagnoses
 - Myocardial infarction < 12 months
 - s/p Coronary artery bypass grafting
 - Stable Angina
 - s/p Valve repair or replacement
 - s/p Coronary angioplasty or stenting
 - s/p Heart or heart-lung transplant
 - Stable chronic heart failure

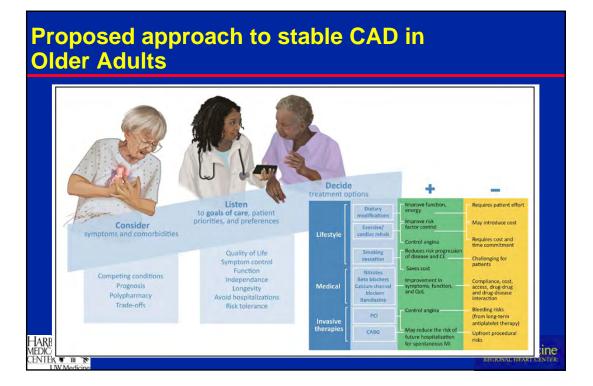

HARBORVIEW MEDICAL CENTER

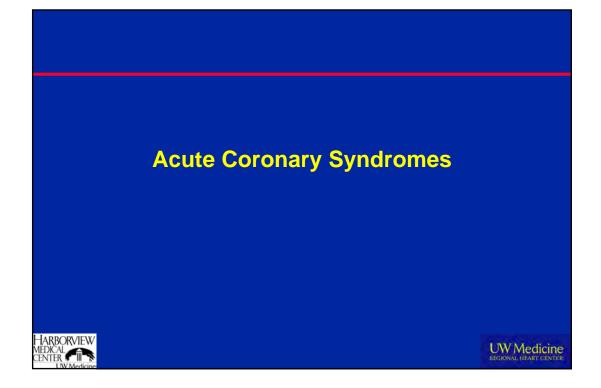

Treatment of Stable CAD

- Goals
- Lifestyle measures: Diet, exercise, smoking cessation
- Medications:
 - Aspirin, other anti-platelets
 - Lipid lowering therapy
 - Antianginals
 - Beta-blockers, Calcium Channel Blockers
 - Nitrates
 - Ranolazine, Ivabradine
- Revascularization
 - Symptoms
 - High risk anatomy

HARBORVIEW MEDICAL

UW Medicine

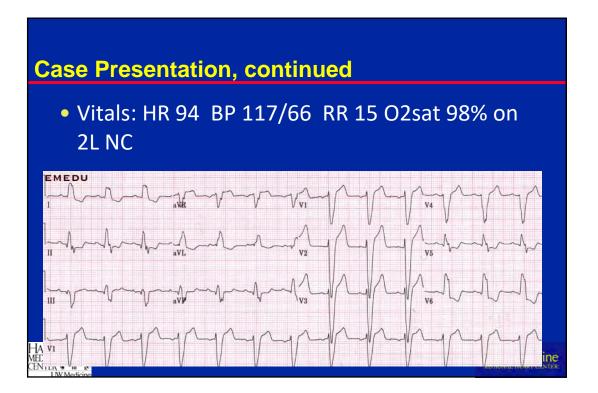


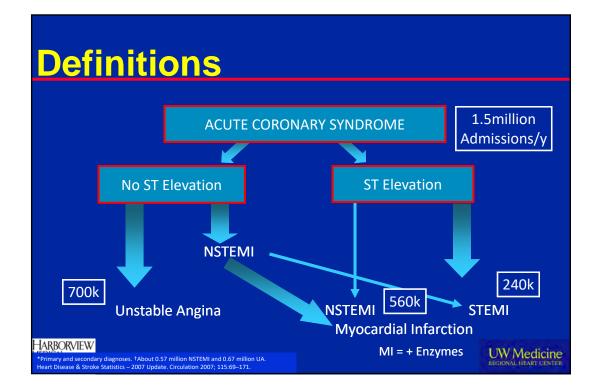


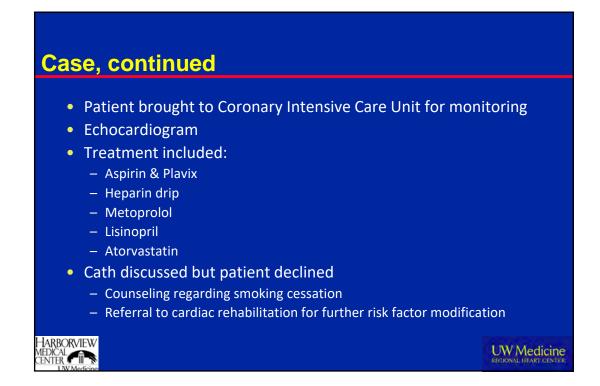
- Has known chronic total occlusion of the circumflex.
- Nuclear vasodilator stress shows a normal LVEF, moderate area of moderate ischemia in the lateral wall
- Referred for Cath, and PCI performed to the circumflex CTO
- Discharged on Apixaban & Clopidogrel
- Medication/dose reduction done with return to prior exercise tolerance

HARBORVIEW MEDICAL

Case Presentation

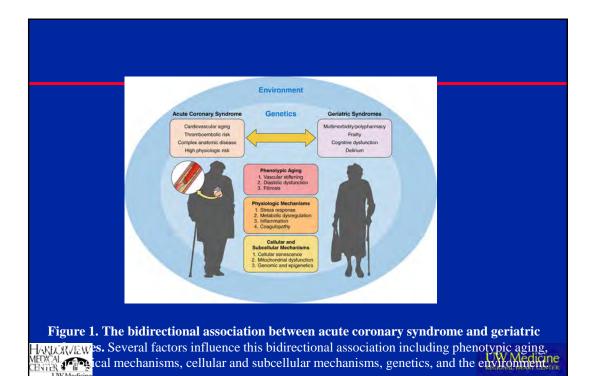

 84 y/o woman presents to the ER brought in by her family after experiencing 2 days of nausea and belching. She only informed her family of this on day 2 when she began to also have some left jaw discomfort which was worse when walking around her apartment.




Case Presentation, continued

- She has a past medical history of hypertension, hyperlipidemia, "borderline" diabetes, osteoarthritis, osteoporosis, recent c/o memory problems.
- On presentation, after 2 sl. NTG, ASA 325mg po and supplemental O2, she reports feeling better with resolved symptoms.

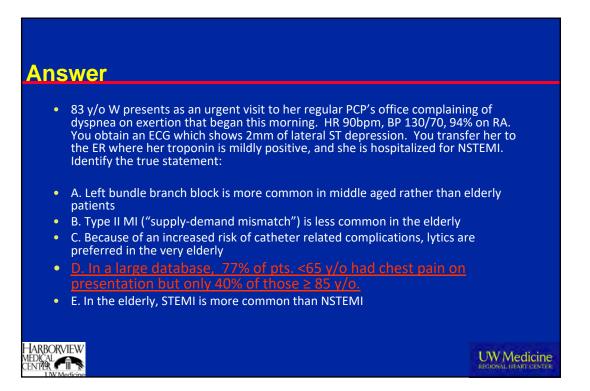
HARBORVIEW MEDICAL



CAD in Older Adults

- More calcified, tortuous and multi-vessel CAD
- Higher rates (~25%) of peripheral arterial disease
- More comorbidities
 - Renal dysfunction
- Procedural success rates high
 - E.g. PCI >90% in older adults
 - Complication rates higher (e.g. bleeding, vascular complications)
- Revascularization with PCI or CABG can have benefits in ACS
 - MACE, QOL, Anginal class, health status (TIME, COURAGE)Complications higher
- CABG vs. PCI in those >75 y is not well studied

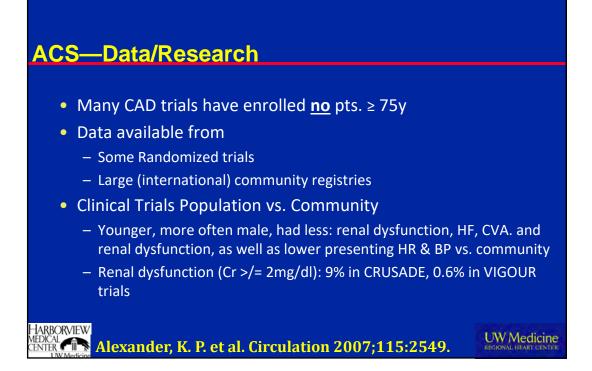
HARBORVIEW Pfisterer M et al. Circulation. 2004;110:1213; Boden WE, et al. N Engl J Med. 2007;356:1503. PNAL HEART CENTER



UW Medicine

Question

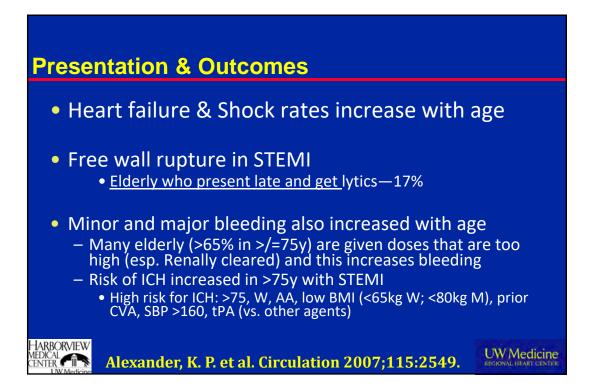
- 83 y/o W presents as an urgent visit to her regular PCP's office complaining of dyspnea on exertion that began this morning. HR 90bpm, BP 130/70, 94% on RA. You obtain an ECG which shows 2mm of lateral ST depression. You transfer her to the ER where her troponin is mildly positive, and she is hospitalized for NSTEMI. Identify the true statement:
- A. Left bundle branch block is more common in middle aged than elderly patients
- B. Type II MI ("supply-demand mismatch") is less common in the elderly
- C. Because of an increased risk of catheter related complications, lytics are preferred to cath/percutaneous intervention in the very elderly
- D. In a large database, 77% of pts. <65 y/o had chest pain on presentation but only 40% of those ≥ 85 y/o
- E. In the elderly, STEMI is more common than NSTEMI


HARBORVIEW MEDICAL

Epidemiology

- ACS: 35% of all deaths ≥ 65 y in the US
- Among people dying of ischemic heart disease, 83% are > 65y
- 60% of MI related deaths occur in the 6% of population >75y
- Age is a major predictor of mortality in ACS
- Adjusted odds for in-hospital death increases by 70% for each 10-year increase in age

HARBORVIEW Alexander, K. P. et al. Circulation 2007;115:2549-2569

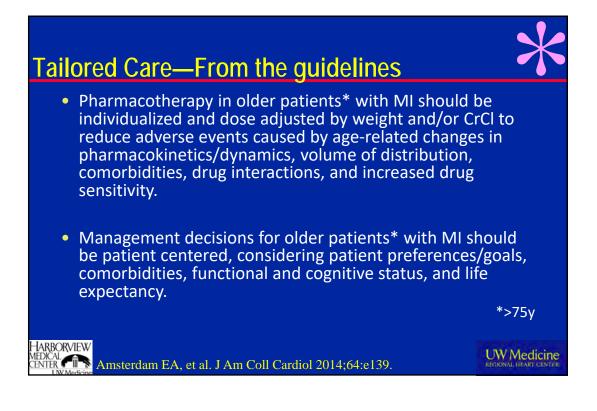


Presentation & Outcomes

- Atypical symptoms common
 - CP in only ~50% of those >85y (vs. 77-90% in <65y)
 - 1° complaint Elderly: 49% Dyspnea, 26% Diaphoresis, 24% N/V, 19% Syncope
 Silent MIs account > 60% of MIs in those > 85y
- Elderly present later (**Q**, non-whites, 1st cardiac event)
- LBBB much more common in elderly (33.8%>/=85y; 5% <65y)
- ACS is more likely associated with another condition "Demand Ischemia" or Type II MI
- Atypical presentation \rightarrow worse prognosis (risk of in-hospital death, 13% vs. 4%)
 - Guidelines: 10-minutes to ECG for sg/sx of MI
 - CRUSADE: Ave 40 min, 7 min longer in>/= 85y vs. < 65y
 43% of >/= 85y had nondiagnostic ECGs (vs. 23% <65y)

HARBORVIEW IEDICAL

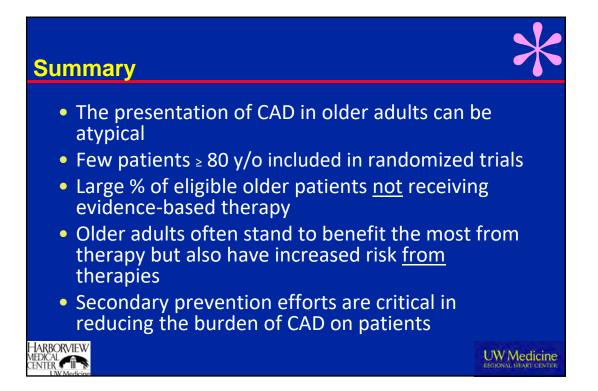
Alexander, K. P. et al. Circulation 2007;115:2549.



Therapy-NSTEMI

Risk-Treatment Paradox

- Patients at the highest risk are treated less aggressively
- STEMI reperfusion rates are lower in elderly, even if "ideal"
 - 80,456 Medicare pts. >65, <12h o/w eligible, 74% no RP <6h, 68% never
- Factors associated with <u>lack</u> of reperfusion
 - Age >/= 75y, **Q**, no CP, CHF, patient preference, contraindications
- Aspirin
 - Absolute and relative benefits greater in highest risk patients (including elderly)
 - Prescribed less often (GRACE 95% <65y vs. 87% >/=85y)
 - 24% of eligible Medicare patients not on ASA


HARBORVIEW Alexander, K. P. et al. Circulation 2007;115:2549-2569

Future Directions

- NIH Health Inclusion Across the Lifespan (2019)
- Studies with patient-centered outcomes
 - LIVE BETTER Trial (medications)
 - QOL, symptoms, mobilty in older adults with stable angina
- Studies of angina with non-obstructive CAD
- Geriatric Risk Models for CAD care
 - Stable & Unstable

HARBORVIEW MEDICAL

